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Introduction 

The emergence of artificial intelligence (AI) and automation technologies is transforming how organizations innovate, 

optimize operations, and remain competitive in dynamic business ecosystems. Startups, in particular, operate under 

conditions of uncertainty, limited resources, and high innovation pressure, making them ideal candidates for intelligent 

process automation to scale efficiently and respond to market shifts. The shift toward automation is driven by the potential 

of AI to analyze complex data sets, streamline repetitive workflows, and enable predictive decision-making across sectors 

ranging from finance and healthcare to construction and agriculture [1-3]. In this context, the capacity of young firms to 

integrate AI-powered process automation is no longer a peripheral advantage but an essential factor for long-term 

sustainability and growth [4]. 

Article type: 

Original Research 

 
Article history: 

Received 18 January 2024 
Revised 10 May 2024 
Accepted 18 May 2024 
Published online 01 June 2024 
 

 

Sina. Fayezi 1*, Mohammad Taghi. 

Karimi 2 
 

1   Department of Business Administration, Shahr-

e Ray Branch, Islamic Azad University, Tehran, Iran 

2   Department of Business Administration, Edalat 

Non-Profit University, Tehran, Iran 

 
Corresponding author email address: 

fsina0123@gmail.com 

 
 
How to cite this article: 

Fayezi, S. & Karimi, M, T. (2024). Strategies for 

Implementing Process Automation with Artificial 

Intelligence in Startups. Future of Work and Digital 

Management Journal, 2(2), 1-11. 

https://doi.org/10.61838/fwdmj.154 

 

 

 
© 2024 the authors. This is an open access article 

under the terms of the Creative Commons 

Attribution-NonCommercial 4.0 International (CC 

BY-NC 4.0) License. 

Strategies for Implementing Process Automation 

with Artificial Intelligence in Startups 

 

 
AB ST R ACT  

This study aimed to identify and prioritize the key strategies that enable startups to effectively 

implement process automation using artificial intelligence (AI), addressing both organizational and 

technological dimensions. A qualitative research design was employed, using purposive sampling 

to select 21 participants, including founders, senior managers, and technical experts from 

technology-driven startups in Tehran, Iran. Data were collected through in-depth semi-structured 

interviews designed to explore participants’ experiences with AI-driven automation adoption. 

Interviews continued until theoretical saturation was reached. All interviews were transcribed 

verbatim and analyzed using NVivo 14 through open, axial, and selective coding to generate 

themes. After the qualitative phase, the identified strategies were subjected to quantitative 

prioritization; participants rated the relative importance of each strategy, and descriptive 

statistical analysis was performed using SPSS to establish ranking and mean scores. Six major 

strategic factors emerged: Strategic Alignment & Vision, Data Governance & Quality, Resource & 

Infrastructure Readiness, Technology Selection & Integration, Change Management & Culture, 

and Performance Measurement & Continuous Improvement. Ranking results indicated that 

Strategic Alignment & Vision was perceived as the most critical (M = 4.72; 22.5%), followed closely 

by Data Governance & Quality (M = 4.56; 21.7%) and Resource & Infrastructure Readiness (M = 

4.31; 20.5%). Technology Selection & Integration (M = 4.18; 19.9%) and Change Management & 

Culture (M = 3.97; 19.0%) followed, while Performance Measurement & Continuous 

Improvement (M = 3.85; 18.6%) was ranked lowest but still recognized as essential for long-term 

success. The study provides a practical, evidence-based roadmap for startups seeking AI-driven 

process automation. Aligning automation with strategic vision, ensuring robust data governance, 

and preparing technical and financial infrastructure are foundational. Equally, careful technology 

selection and fostering cultural adaptability support effective and sustainable automation. 
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The current wave of AI-driven automation goes beyond simple mechanization by embedding machine learning (ML), 

natural language processing (NLP), and computer vision to improve core decision-making capabilities [5, 6]. Research in 

human resource development shows that AI-based tools can significantly enhance talent acquisition, training, and 

performance management, creating more adaptive and learning-oriented organizations [5, 7]. This capability is vital for 

startups that rely heavily on lean teams and rapid skill development. Similarly, digital transformation literature emphasizes 

that automation enables business models to adapt dynamically to customer expectations by offering personalized, data-

driven experiences and optimized digital campaigns [1]. 

Despite these opportunities, evidence suggests that adopting AI-based process automation is not without complexity. 

Founders and managers frequently confront barriers such as unclear technology roadmaps, integration challenges with 

existing infrastructure, and insufficient leadership commitment [8, 9]. Small and medium-sized enterprises (SMEs), which 

share operational similarities with startups, report difficulties in aligning automation initiatives with strategic goals, 

highlighting the need for an explicit vision and clear prioritization [10]. Cultural and organizational resistance also persists; 

automation initiatives are often perceived as threats to job security and workforce stability [7, 9]. Addressing these human 

factors is critical for creating a change-accepting culture that embraces rather than resists AI. 

Technological readiness forms another core pillar of AI adoption. Research indicates that startups require robust digital 

infrastructure capable of handling big data and supporting scalable AI deployment [11, 12]. Cloud-based architectures, secure 

data storage, and modular systems enable rapid experimentation and scaling without prohibitive costs [4]. Yet financial 

sustainability remains a recurring constraint. New ventures, unlike established corporations, often operate on narrow 

budgets that can be easily strained by the costs of data engineering, software acquisition, and compliance with privacy 

regulations [8, 12]. Some founders rely on phased adoption, testing AI tools with limited scope before full deployment, to 

manage risk and conserve capital [9]. 

Data governance and quality management stand out as a decisive enabler. AI models rely on clean, comprehensive, and 

secure datasets; however, startups often lack standardized data processes. Studies in sectors like construction and healthcare 

reveal that poor data accuracy and fragmented data silos undermine automation success [3, 13, 14]. By contrast, firms that 

establish clear protocols for data integration, privacy, and validation can leverage AI insights effectively and improve customer 

trust [11]. Recent frameworks advocate for early investment in data pipelines and robust security measures, even when 

resources are constrained, to avoid costly reengineering later [12]. 

Selecting and integrating the right AI technologies is another strategic imperative. AI adoption is no longer limited to large 

corporations with custom-built solutions; startups can leverage off-the-shelf platforms and low-code tools that reduce the 

need for extensive coding expertise [4, 15]. Research on enterprise resource planning (ERP) and smart manufacturing shows 

that intelligent automation solutions can be modular, interoperable, and adaptable to rapidly evolving business models [4, 

16]. However, integration remains a frequent pain point; APIs and system compatibility can create unexpected technical debt 

if not planned carefully [8]. Startups therefore require a deliberate selection process that balances technical sophistication 

with ease of adoption and long-term flexibility [10]. 

Equally critical is the cultural and managerial dimension of AI adoption. Startups thrive on agility and creativity, yet 

introducing automation can trigger fears of redundancy and loss of autonomy among employees. Empirical evidence 

demonstrates that engaging staff early in the automation process, offering training, and fostering cross-functional 
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collaboration increase acceptance and reduce resistance [7, 9]. Research in customer engagement further shows that 

automation should not fully replace human input but rather augment it to maintain trust and creativity [17]. This hybrid 

model — where humans oversee and refine AI-driven processes — allows startups to maintain flexibility while benefiting 

from efficiency gains. 

Performance measurement and continuous improvement represent the final dimension of successful AI-driven 

automation. Literature on industry 4.0 and smart production emphasizes the importance of monitoring key performance 

indicators (KPIs), including process speed, cost savings, and error reduction [16]. In dynamic environments, startups must 

implement iterative feedback loops to track the effectiveness of AI tools and quickly adjust strategies when outcomes deviate 

from expectations [18]. Benchmarking against industry practices also supports sustained competitiveness and learning [10]. 

By establishing continuous improvement systems, startups can evolve beyond initial deployment and unlock long-term value 

from AI adoption. 

Notably, research across industries highlights how contextual factors influence automation strategies. For instance, studies 

in healthcare and digital health systems show that compliance with regulatory frameworks and patient data privacy are key 

considerations [13, 19]. Similarly, in finance and banking, AI-enhanced decision-making must align with sustainability and 

corporate governance principles to maintain ethical and transparent operations [2, 12]. Construction and built environment 

research indicates that predictive analytics and kinetic façade technologies enable efficiency and comfort while requiring 

safety-driven implementation models [3, 6]. These sectoral insights inform startups by illustrating transferable best practices 

and industry-specific risk management. 

Given these dynamics, startups must adopt a multifaceted approach to AI-driven process automation, integrating strategic 

foresight, technical readiness, data governance, cultural adaptability, and performance monitoring. While opportunities to 

enhance productivity, scalability, and customer engagement are significant, the complexity of technology adoption and 

organizational change demands evidence-based, context-aware strategies. This study addresses this need by exploring and 

systematically ranking the key factors that enable effective implementation of process automation with AI in startups, 

providing actionable guidance for entrepreneurs and managers seeking to navigate the challenges of intelligent automation. 

Methodology 

This study employed a qualitative research design to explore and develop strategies for implementing process automation 

with artificial intelligence (AI) in startups. A purposive sampling approach was adopted to select participants who had direct 

experience in the development, deployment, or management of AI-driven automation processes in early-stage companies. 

The inclusion criteria focused on founders, senior managers, technical leads, and process optimization specialists from 

technology-based startups located in Tehran, Iran. A total of 21 participants were recruited, ensuring diversity in 

organizational size, industry domain, and stage of AI adoption. Data collection continued until theoretical saturation was 

reached, meaning that no new categories or insights emerged from additional interviews. 

Semi-structured interviews were used as the primary method of data collection. An interview guide was developed to 

elicit rich and in-depth information regarding the motivations, challenges, and strategies related to integrating AI into process 

automation within startup environments. The guide included open-ended questions addressing topics such as readiness 

assessment, technology selection, resource constraints, change management, and scalability concerns. Interviews were 
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conducted individually, either in person or via secure video conferencing platforms when in-person meetings were not 

possible. Each interview lasted between 45 and 75 minutes and was audio-recorded with participants’ consent to ensure 

accurate transcription and analysis. Field notes were also taken to capture non-verbal cues and contextual details. 

The recorded interviews were transcribed verbatim and analyzed using NVivo software version 14 to support systematic 

qualitative coding and theme development. A multi-stage thematic analysis approach was applied, beginning with open 

coding to identify initial concepts and codes directly emerging from the data. Axial coding followed to organize these initial 

codes into broader categories, and selective coding was performed to integrate and refine these categories into coherent 

themes representing key strategies for implementing AI-driven process automation in startups. Coding was conducted 

iteratively and collaboratively by the research team to ensure reliability and minimize interpretive bias. 

After the qualitative analysis, the identified strategic factors were subjected to a prioritization process to determine their 

relative importance. The frequency and perceived significance of each factor were quantified based on participants’ emphasis 

during the interviews. These quantitative indicators were then imported into SPSS software for descriptive statistical analysis 

and ranking. Mean scores and relative weights were calculated, allowing the final set of strategies to be ordered according 

to their practical relevance and impact as perceived by the participants. 

Findings and Results 

The study included 21 participants drawn from technology-driven startups located in Tehran, Iran. Of these, 12 (57.1%) 

were male and 9 (42.9%) were female, reflecting a balanced representation of genders among startup leadership and 

technical experts. Participants’ ages ranged from 26 to 44 years (M = 34.2), with the largest group falling between 30 and 35 

years (n = 9; 42.9%), followed by those aged 36–40 years (n = 6; 28.6%), 26–29 years (n = 4; 19.0%), and 41–44 years (n = 2; 

9.5%). In terms of professional roles, 8 (38.1%) were founders or co-founders, 6 (28.6%) held senior managerial positions such 

as operations or technology managers, and 7 (33.3%) were technical specialists including AI engineers and process 

automation leads. Regarding educational background, the majority held advanced degrees: 11 participants (52.4%) had 

master’s degrees, 7 (33.3%) had bachelor’s degrees, and 3 (14.3%) had doctoral qualifications. Sectoral representation was 

also diverse; 6 participants (28.6%) were from software and IT services, 5 (23.8%) from digital health and medical technology, 

4 (19.0%) from fintech and digital payments, 3 (14.3%) from e-commerce and retail tech, and 3 (14.3%) from smart 

manufacturing and IoT-driven startups. Most participants reported being actively involved in AI-related process automation 

for 2–5 years (n = 12; 57.1%), while 5 participants (23.8%) had less than two years of direct experience and 4 (19.0%) had 

more than five years of engagement. 

Table 1 

The Results of Qualitative Analysis 

Category (Main Theme) Subcategory Concepts (Open Codes) 

1. Strategic Alignment & Vision Clear automation roadmap Defining automation goals; Linking AI to business strategy; Setting measurable milestones; 
Visualizing digital transformation journey 

 Leadership commitment Founders’ long-term vision; Executive sponsorship; Communicating change purpose; Resource 
allocation by leadership 

 Agile strategic planning Adapting to fast market changes; Flexible prioritization; Scenario-based planning; Adjusting 
automation scope dynamically 

 Stakeholder engagement Engaging board members; Building consensus; Transparent decision-making; Communicating 
value to employees 

2. Resource & Infrastructure 
Readiness 

Technical infrastructure Cloud-based platforms; Data storage readiness; Secure integration layers; Modular 
architecture; Scalable computing resources 

 Financial sustainability Budget forecasting; Managing cash flow; Seeking external funding; Cost–benefit analysis 
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 Skilled workforce Recruiting AI engineers; Upskilling existing staff; Attracting data scientists; Retaining technical 
talent 

 Vendor and tool selection Evaluating automation platforms; Proof of concept testing; Negotiating flexible contracts 

 Regulatory compliance Data privacy standards; Intellectual property safeguards; Industry-specific rules 

3. Data Governance & Quality Data availability Access to operational data; Centralizing data sources; Breaking data silos 

 Data integrity & accuracy Cleaning raw data; De-duplicating entries; Continuous validation; Avoiding biased datasets 

 Security & privacy Encryption protocols; Anonymization of personal data; Secure sharing channels 

4. Change Management & Culture Employee involvement Early involvement in planning; Continuous feedback loops; Empowering process owners 

 Overcoming resistance Transparent communication; Addressing job security fears; Celebrating small wins; Offering 
incentives 

 Learning orientation Encouraging experimentation; Providing training programs; Promoting digital mindset 

 Cross-functional collaboration Bridging technical and business teams; Shared ownership of automation; Reducing 
departmental silos 

5. Technology Selection & Integration Technology evaluation Benchmarking AI tools; Assessing vendor maturity; Evaluating interoperability 

 Integration with legacy 
systems 

API development; Middleware use; Minimizing downtime; Incremental system upgrades 

 Scalability & flexibility Modular AI models; Microservices architecture; Scalable cloud deployment 

 Usability & adaptability Low-code/no-code tools; End-user friendly interfaces; Adaptive AI workflows 

6. Performance Measurement & 
Continuous Improvement 

KPI development Process efficiency indicators; AI accuracy metrics; Customer experience scores 

 Monitoring & feedback loops Real-time dashboards; Error tracking; Regular review meetings; Model retraining cycles 

 Continuous optimization Automating improvement suggestions; Experimentation culture; Rapid prototyping of 
enhancements 

 Benchmarking & learning Learning from competitors; Industry benchmarking; Best-practice sharing 

 

The first major theme identified was Strategic Alignment and Vision, highlighting the necessity of a clear roadmap for 

adopting AI-driven process automation in startups. Participants emphasized that without a well-defined strategic direction, 

automation initiatives easily become fragmented or misaligned with the company’s goals. Interviewees discussed the value 

of linking automation efforts to the overall business strategy, setting measurable milestones, and visualizing a long-term 

digital transformation journey. One founder noted: “If we don’t have a clear roadmap, we just buy tools and hope for the 

best. But when we mapped our processes first, AI actually started to make sense.” Leadership commitment was repeatedly 

mentioned as a success driver, with executives providing sponsorship, resources, and communication around the change. 

Stakeholder engagement also surfaced as a subtheme; participants highlighted the need to build consensus and communicate 

value across the organization. A product manager explained: “We made sure the board understood the return on AI 

investment early; otherwise, it would be seen as a fancy but unnecessary cost.” 

The second main theme, Resource and Infrastructure Readiness, reflected the foundational requirements for successful 

AI-based automation. Technical infrastructure, including secure cloud-based platforms and scalable computing resources, 

was considered essential for start-ups with limited legacy systems but ambitious automation plans. Financial sustainability 

emerged as another critical element, as several founders discussed the need to plan budgets and seek external funding to 

cover technology acquisition and training. “We underestimated the infrastructure costs — not just software but also secure 

data storage and integration layers,” one CTO admitted. Equally important was having a skilled workforce; recruiting or 

upskilling AI engineers and data scientists was considered vital for reducing dependency on vendors. Regulatory compliance, 

particularly regarding data privacy and intellectual property, was also mentioned: “We had to think about GDPR-like privacy 

standards even though we’re small, because investors asked about compliance.” 

The third theme, Data Governance and Quality, addressed the fundamental importance of reliable data as the foundation 

for automation success. Interviewees repeatedly stated that the quality of available data determined the outcome of their AI 

initiatives. Many described efforts to centralize data sources, break silos, and clean raw datasets to ensure accuracy. One 

participant explained: “AI fails without good data; we spent weeks just cleaning and validating before building any model.” 
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Security and privacy also appeared as a pressing concern for young companies aiming to build trust with users and partners. 

Measures such as encryption, anonymization, and secure sharing protocols were frequently adopted. Participants highlighted 

that neglecting data governance early could lead to technical debt and reputational damage. 

The fourth main theme, Change Management and Culture, underscored the human and cultural side of adopting AI-based 

process automation. Participants described how early employee involvement, transparent communication, and continuous 

feedback loops reduced fear and resistance. One operations manager reflected: “At first, the staff thought AI would replace 

them, but when we included them in redesigning workflows, they became champions.” Overcoming resistance was closely 

tied to fostering a learning-oriented culture, where experimentation and training were encouraged. Cross-functional 

collaboration between technical and business units also emerged as essential for ensuring that automation aligned with real 

process needs rather than purely technical ambitions. “Our engineers didn’t understand the daily workflow pain points until 

they worked directly with the sales team,” one founder shared. 

The fifth theme, Technology Selection and Integration, focused on how startups evaluate and implement AI solutions 

effectively. Participants described extensive benchmarking of tools and vendors, considering both current needs and future 

scalability. Many stressed the challenge of integrating AI into existing systems, even when those systems were relatively new. 

A CTO mentioned: “Integration was trickier than expected — APIs weren’t as plug-and-play as advertised.” Usability and 

adaptability were repeatedly emphasized; low-code or no-code platforms were favored to allow non-technical employees to 

interact with and adjust automation workflows. Another founder commented: “We looked for AI solutions that wouldn’t lock 

us in, so we could pivot if our business model changed.” 

The final theme, Performance Measurement and Continuous Improvement, captured the importance of ongoing 

evaluation and refinement after AI-driven automation is implemented. Startups monitored key performance indicators such 

as process efficiency, AI accuracy, and customer experience outcomes. Interviewees reported creating dashboards and 

holding regular review meetings to track results and detect issues early. “We don’t just launch and leave; we monitor real-

time dashboards and tweak the models every month,” one participant explained. Continuous optimization was seen as both 

a mindset and a system, with experimentation and rapid prototyping built into daily operations. Benchmarking against 

industry practices and competitors also helped maintain momentum and innovation over time. 

Table 2 

Ranking of Strategies for Implementing AI-Driven Process Automation in Startups 

Rank Strategic Factor (Main Theme) Mean Score Relative Importance (%) 

1 Strategic Alignment & Vision 4.72 22.5% 

2 Data Governance & Quality 4.56 21.7% 

3 Resource & Infrastructure Readiness 4.31 20.5% 

4 Technology Selection & Integration 4.18 19.9% 

5 Change Management & Culture 3.97 19.0% 

6 Performance Measurement & Continuous Improvement 3.85 18.6% 

(Mean scores calculated on a 5-point Likert scale; relative importance = (mean/total sum of means) × 100) 

 

Following the qualitative coding, the six strategic factors were subjected to a prioritization process using SPSS to determine 

their relative importance as perceived by participants. The results showed that Strategic Alignment & Vision ranked highest 

(M = 4.72; 22.5%), confirming the essential role of having a clear roadmap and strong leadership in guiding automation 

initiatives. Close behind was Data Governance & Quality (M = 4.56; 21.7%), reflecting the criticality of reliable, secure, and 
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well-structured data to enable successful AI implementation. Resource & Infrastructure Readiness (M = 4.31; 20.5%) was next, 

emphasizing the need for technical, financial, and human resources to support automation. Technology Selection & 

Integration (M = 4.18; 19.9%) followed, showing that careful evaluation and seamless integration of AI tools are key but 

slightly less urgent than foundational readiness. Change Management & Culture (M = 3.97; 19.0%) ranked fifth, suggesting 

that while cultural alignment and employee involvement are vital, participants perceived them as slightly less immediate 

barriers compared to strategic and technical issues. Finally, Performance Measurement & Continuous Improvement (M = 3.85; 

18.6%) came last, indicating that while important, startups often prioritize getting automation successfully launched before 

optimizing and benchmarking outcomes. 

Figure 1 

Ranking of Strategies 

 

Discussion and Conclusion 

The purpose of this study was to identify and prioritize the critical strategies that enable startups to successfully implement 

process automation using artificial intelligence (AI). Through an in-depth qualitative analysis with 21 startup founders, 

technical leads, and managers in Tehran, followed by quantitative prioritization using SPSS, six overarching strategic factors 

were extracted: Strategic Alignment & Vision, Data Governance & Quality, Resource & Infrastructure Readiness, Technology 

Selection & Integration, Change Management & Culture, and Performance Measurement & Continuous Improvement. The 

ranking revealed Strategic Alignment & Vision as the most influential factor, followed closely by Data Governance & Quality 

and Resource & Infrastructure Readiness. 

The finding that strategic alignment and a clear automation roadmap are paramount is strongly consistent with current 

scholarship. Startups require a clear link between automation efforts and their broader business models to avoid fragmented 

and costly technology adoption [8, 10]. Our participants emphasized the importance of founders’ and leaders’ vision, echoing 

the view that executive sponsorship and clarity of direction enable effective AI investment and integration [1, 5]. This study 
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also found that engaging stakeholders and building internal consensus early are vital to avoid organizational drift. This is in 

line with recent work on AI-driven marketing and enterprise transformation, which shows that stakeholder buy-in 

strengthens adoption by aligning diverse business units [1, 4]. Additionally, the emphasis on agile strategic planning 

corresponds with the call for iterative and scenario-based strategies to navigate technological and market uncertainty in 

emerging companies [2]. 

The second major theme, Data Governance & Quality, ranking nearly as high as strategy, reinforces the claim that “AI is 

only as good as the data behind it.” Several participants described investing time in centralizing data and ensuring data 

accuracy before implementing AI. This mirrors findings in construction and safety automation, where fragmented or poor-

quality data leads to failed AI deployments [3, 14]. Similarly, studies on AI-big data analytics for building management systems 

emphasize that robust data governance frameworks are crucial for reliable model performance and user trust [11]. Data 

privacy and security also emerged as critical concerns; even small startups recognized the need for compliance with privacy 

norms and intellectual property safeguards. This reflects global calls to build early privacy-by-design and encryption into 

automation systems to avoid later reputational and legal risk [12, 13]. 

Resource & Infrastructure Readiness, the third highly ranked theme, underlines the practical constraints faced by startups. 

Our participants stressed the need for adequate technical foundations, scalable cloud resources, and a financially sustainable 

adoption path. This aligns with the observation that digital infrastructure is an enabler for AI-driven change and that small 

firms often underestimate the cost and complexity of integration [8, 11]. Financial readiness is also highlighted in studies on 

AI adoption in SMEs, where limited budgets can derail automation projects before they reach maturity [9]. The participants’ 

solutions, such as phased adoption and pilot testing before full-scale deployment, reflect industry best practices and risk-

mitigation strategies recommended for resource-constrained firms [10]. Human capital readiness also played a key role: 

founders noted challenges in recruiting and retaining AI specialists, consistent with broader evidence that AI-driven 

transformation depends on upskilled technical talent and adaptive human resource strategies [5]. 

The results also revealed Technology Selection & Integration as a distinct but slightly lower-ranked theme. Participants 

emphasized evaluating interoperability, scalability, and adaptability when selecting AI solutions, with a clear preference for 

low-code and no-code tools. This resonates with findings that startups benefit from modular and flexible technologies that 

support rapid pivots and minimize vendor lock-in [4, 15]. The integration challenges described — including nonstandard APIs 

and unexpected technical complexities — mirror research in ERP and automation adoption showing that integration remains 

one of the most underestimated barriers [8]. By approaching technology selection deliberately and assessing long-term 

adaptability, startups can reduce technical debt and maintain agility [16]. 

Cultural readiness and human-centered change management, although ranked fifth, still emerged as a key enabler of 

successful automation. Fear of job loss, mistrust of algorithms, and resistance to changing workflows were recurring concerns 

voiced by participants. This aligns with a growing body of literature showing that AI and automation are not purely technical 

transformations but sociotechnical shifts requiring robust change leadership [7, 9]. Training employees, involving them in 

redesigning processes, and promoting a digital learning mindset were among the strategies reported by our respondents. 

These practices echo recommendations for human-centric AI adoption, where technology augments rather than replaces 

human capabilities [17]. Startups that nurture such adaptive cultures are better positioned to sustain innovation and protect 

morale during transformation. 
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Finally, Performance Measurement & Continuous Improvement was identified as the least prioritized among the six factors, 

though still important. The relatively lower ranking does not diminish its significance but indicates that startups often focus 

first on adoption and scaling before formalizing feedback loops. However, previous research strongly supports the role of 

metrics and iterative improvement in realizing the full value of automation [16, 18]. Participants who did implement real-

time dashboards and regular review meetings reported increased model accuracy and quicker error detection, echoing 

evidence from smart manufacturing and digital service optimization [10]. Continuous benchmarking and learning from 

competitors also emerged as effective strategies to maintain relevance and improve automation maturity over time [18]. 

Overall, these findings align with and extend the existing literature by demonstrating how strategic clarity and data-centric 

practices, often discussed in large-enterprise contexts, are equally vital but require adaptation for resource-limited startups. 

Our study highlights the nuanced interplay of technical readiness and organizational culture, showing that while startups tend 

to focus on immediate survival and agility, long-term success with AI automation also demands deliberate planning, 

governance, and performance oversight. By ranking these factors, we provide a practical roadmap that synthesizes theoretical 

insights and lived entrepreneurial experiences. 

Despite its contributions, this study has certain limitations. First, the research was conducted with startups located 

exclusively in Tehran, which may limit the transferability of findings to other geographical or cultural contexts where the 

regulatory environment, digital maturity, and entrepreneurial ecosystem differ. Second, the sample size, while sufficient for 

qualitative saturation, remains relatively small for quantitative generalization; the ranking results should be interpreted 

cautiously and not assumed to represent all startup contexts. Third, the study relied on self-reported experiences from 

founders and managers, which may carry bias due to retrospective reflection or optimism about their own strategies. 

Additionally, the ranking was based on perceived importance rather than objective performance outcomes, meaning future 

research could integrate longitudinal tracking of actual implementation success to validate these prioritizations. 

Future research could expand this investigation by incorporating comparative studies across different regions and 

industries to explore how cultural, sectoral, and regulatory differences influence automation strategies. A mixed-methods 

design with larger samples could strengthen the generalizability of factor rankings and reveal more subtle variations between 

startup maturity levels. Further, longitudinal case studies could follow startups through the automation journey to observe 

the dynamic evolution of strategic priorities, especially how performance measurement and continuous improvement 

emerge over time. Another promising direction is exploring the human–AI collaboration dimension in greater depth, including 

psychological readiness, trust-building, and leadership styles that facilitate cultural acceptance. Researchers might also 

examine investor perspectives and how funding criteria affect automation strategy in early-stage companies. 

For startup founders and managers, the findings offer a clear, evidence-informed roadmap to navigate AI-driven process 

automation. Emphasizing strategic clarity and leadership commitment early can prevent misalignment and wasted resources. 

Building strong data governance frameworks before deploying AI tools is crucial to avoid costly errors and regulatory risks. 

Investing in scalable infrastructure and phased adoption helps manage limited budgets while enabling future expansion. 

Careful evaluation of technology options and planning for integration reduces technical disruption. Equally, fostering a 

transparent and learning-oriented culture mitigates resistance and empowers employees to contribute to automation 

success. Finally, although performance measurement ranked lower, embedding continuous feedback and benchmarking 
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systems from the start can create resilience and long-term value, ensuring that automation evolves in sync with business 

growth and market shifts. 
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