

Article type:
Original Research

Article history:
Received 05 November 2025
Revised 17 February 2026
Accepted 19 February 2026
Published online 01 May 2026

Enayat. Mohammadpour¹, Shams Sadat. Zahedi^{2*}, Mohammad. Montazeri³

1 PhD student in Public Administration,
Department of Management, Si.C., Islamic Azad University, Sirjan, Iran.

2 Professor, Department of Management, Si.C., Islamic Azad University, Sirjan, Iran.

3 Assistant Professor, Department of Management, Payame Noor University, Tehran, Iran.

Corresponding author email address:
szahedi44@iau.ac.ir

How to cite this article:

Mohammadpour, E., Zahedi, S. S. & Montazeri, M. (2026). Interpretive Structural Modeling of the Drivers of Non-Elite Selection in Iranian Governmental Organizations. *Future of Work and Digital Management Journal*, 4(3), 1-17. <https://doi.org/10.61838/fwdmj.222>

© 2026 the authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.

Interpretive Structural Modeling of the Drivers of Non-Elite Selection in Iranian Governmental Organizations

ABSTRACT

The objective of the present study is to develop an interpretive structural model of the drivers of non-elite selection in Iranian governmental organizations. This study falls within the category of mixed-methods research designs. In terms of purpose, the research is applied, and with respect to data collection, it is descriptive, employing a qualitative-quantitative approach. Initially, a list of drivers was identified through content analysis and semi-structured interviews with experts, then screened using the Delphi method, and subsequently stratified using the interpretive structural modeling (ISM) approach. The participants in the thematic analysis phase consisted of 15 academic experts and managers of governmental organizations. In the Delphi analysis and interpretive structural modeling phase, 12 academic experts and human resource managers from governmental organizations participated, who were selected using purposive sampling. The instrument used in the qualitative phase was semi-structured interviews; in the Delphi phase, an expert-based questionnaire was employed; and in the interpretive structural modeling phase, an ISM questionnaire was utilized. In this study, 15 key factors were identified and classified into six hierarchical levels: Level 1 (outcome factors: elite migration and intra-organizational distrust), Level 2 (elite-averse managerial fear and resistance to change), Level 3 (weak evaluation system, preference for personal relationships, and anti-elite managerial attitudes), Level 4 (inefficient employment structure and traditional recruitment processes), Level 5 (influence of powerful interest groups, lack of meritocracy, and centralized decision-making), and Level 6 (root factors: weak governance support, anti-elite public culture, and external political pressures). This model illustrates the causal relationships among these factors, and its innovation compared to previous studies lies in integrating internal and external factors to support comprehensive policymaking.

Keywords: Interpretive Structural Modeling, Elite Selection, Governmental Organization.

Introduction

The effectiveness, sustainability, and adaptive capacity of governmental organizations increasingly depend on their ability to identify, attract, develop, and retain elite human capital. In contemporary knowledge-based economies, elite individuals—defined as those possessing high levels of expertise, creativity, and leadership potential—serve as the principal drivers of innovation, institutional resilience, and national competitiveness. Talent management has thus emerged as a strategic priority for public sector institutions, particularly in contexts characterized by rapid technological change, globalization, and evolving workforce expectations [1, 2]. The strategic importance of elite selection is further reinforced by the increasing reliance on specialized skills and cognitive capabilities in public administration, where complex policy environments require highly capable personnel capable of navigating uncertainty and implementing evidence-based solutions [3]. Consequently, elite selection is no longer a routine administrative function but rather a central determinant of organizational performance, governance effectiveness, and long-term institutional sustainability.

Despite this strategic importance, many governmental organizations face persistent challenges in establishing effective systems for identifying and recruiting elite individuals. These challenges often arise from structural, cultural, political, and procedural constraints that undermine merit-based selection and talent retention mechanisms. Recruitment and selection systems in public organizations are frequently influenced by bureaucratic rigidity, political interference, and institutional inertia, which limit their ability to attract and retain top talent [4, 5]. Moreover, deficiencies in recruitment methodologies, including reliance on traditional evaluation systems and inadequate competency-based assessment frameworks, can result in the selection of less qualified candidates, thereby weakening organizational performance and reducing institutional competitiveness [6]. The emergence of artificial intelligence and machine learning has introduced new opportunities to enhance recruitment efficiency and reduce bias, yet many public sector organizations have not fully integrated these technologies into their selection processes, limiting their potential to improve elite selection outcomes [7, 8].

In addition to procedural limitations, organizational culture and managerial attitudes play a critical role in shaping elite selection dynamics. Research has demonstrated that managerial resistance to elite recruitment may arise from perceived threats to authority, fear of organizational change, or concerns about disruption to existing power structures. Elite-avoidance behaviors among managers represent a significant barrier to meritocratic recruitment and can contribute to systemic inefficiencies within public institutions [9]. Such behaviors are often reinforced by institutional cultures that prioritize loyalty, conformity, or personal relationships over competence and innovation, thereby undermining the principles of meritocracy and professional excellence [10]. The persistence of anti-elite attitudes within organizations may also reflect broader societal perceptions of elites, which are shaped by political narratives, economic inequalities, and cultural factors that influence public trust and institutional legitimacy [11, 12]. These cultural and psychological dynamics contribute to the complexity of elite selection and highlight the need for comprehensive, system-level analysis.

Structural and governance-related factors further complicate elite selection processes in governmental organizations. Weak governance frameworks, centralized decision-making systems, and inadequate accountability mechanisms can create environments in which elite selection is influenced by political considerations rather than merit-based criteria. Such conditions reduce organizational transparency and limit opportunities for highly qualified individuals to enter and advance within public institutions [13, 14]. Moreover, the influence of powerful interest groups and political actors can distort recruitment processes, resulting in patronage-based appointments and reduced organizational effectiveness. These dynamics are particularly pronounced in environments characterized by strong political control over administrative systems, where institutional autonomy is limited and recruitment decisions are subject to external influence [12, 15]. The consequences of these structural limitations extend beyond individual organizations, affecting national innovation capacity, governance quality, and economic development.

The failure to effectively recruit and retain elite individuals has significant organizational and societal consequences. One of the most critical outcomes is elite migration, commonly referred to as brain drain, which represents the loss of highly skilled individuals to more competitive or supportive institutional environments. Elite migration reduces the intellectual capital available to governmental organizations and weakens their ability to implement complex policy initiatives and deliver high-quality public services [16]. In addition, ineffective elite selection systems contribute to reduced employee motivation, lower organizational trust, and diminished institutional legitimacy. When employees perceive recruitment processes as unfair or politically influenced, their commitment to organizational goals declines, resulting in reduced productivity and increased

turnover [17]. These outcomes highlight the systemic nature of elite selection challenges and underscore the importance of addressing underlying structural and cultural drivers.

The complexity of elite selection challenges requires a forward-looking and systems-based approach that considers both internal organizational factors and external environmental influences. Futures studies methodologies and foresight-based approaches provide valuable tools for analyzing complex organizational systems and identifying key drivers of change. These approaches emphasize the importance of anticipating future trends, exploring alternative scenarios, and developing adaptive strategies to enhance organizational resilience and effectiveness [18, 19]. Scenario development techniques, in particular, enable organizations to explore potential future conditions and identify strategic interventions to improve talent management systems [20, 21]. Similarly, foresight methodologies have been shown to improve organizational decision-making and enhance the effectiveness of strategic planning processes [22, 23]. By integrating foresight perspectives into talent management strategies, organizations can better anticipate emerging challenges and develop proactive solutions to improve elite selection outcomes.

Recent research has also emphasized the importance of integrated talent management frameworks that align recruitment, development, and retention processes with organizational strategy. Effective talent management systems are characterized by transparent recruitment processes, competency-based evaluation frameworks, and supportive organizational cultures that promote innovation and professional growth [24, 25]. These systems require coordinated efforts across multiple organizational levels and functions, including human resource management, leadership development, and performance evaluation. Moreover, advances in digital technologies and data analytics offer new opportunities to enhance talent management processes by enabling more accurate assessment of candidate capabilities and improving decision-making accuracy [3, 7]. However, the successful implementation of these technologies depends on organizational readiness, governance structures, and cultural acceptance, highlighting the need for comprehensive organizational transformation.

Interpretive Structural Modeling (ISM) has emerged as a valuable methodological tool for analyzing complex systems and identifying hierarchical relationships among key variables. ISM enables researchers to systematically examine causal relationships among factors and develop structured models that provide insights into system dynamics and interdependencies. This methodology has been widely applied in organizational research to analyze strategic factors, identify key drivers, and support evidence-based decision-making [15]. By identifying the hierarchical structure of drivers and their causal relationships, ISM provides a comprehensive framework for understanding complex organizational challenges and developing targeted interventions. The integration of ISM with qualitative methods such as thematic analysis and Delphi techniques enhances the robustness and validity of research findings, enabling researchers to capture both expert perspectives and empirical relationships among variables [15, 26].

In the context of governmental organizations, the application of ISM and related systems-based methodologies offers significant potential for improving elite selection processes. By identifying the root causes and systemic drivers of non-elite selection, policymakers and organizational leaders can develop targeted strategies to address structural barriers, improve recruitment transparency, and promote meritocratic practices. Such approaches are particularly important in environments characterized by complex governance systems and multiple stakeholder influences, where traditional analytical methods may be insufficient to capture system dynamics. Furthermore, the integration of foresight perspectives with ISM can enhance the

strategic relevance of research findings and support the development of adaptive talent management systems that are capable of responding to evolving organizational and environmental conditions [13, 18].

Given the strategic importance of elite selection for organizational effectiveness, governance quality, and national development, and considering the complex interplay of structural, cultural, political, and organizational factors that influence recruitment processes in governmental institutions, the present study aims to develop an interpretive structural model of the drivers of non-elite selection in Iranian governmental organizations.

Methodology

The present study was designed using a mixed-methods approach and implemented in two main qualitative and quantitative phases in order to comprehensively cover different aspects of the research topic. The qualitative phase focused on thematic analysis and the Delphi method to identify and categorize key concepts derived from interview data, while the quantitative phase employed the Interpretive Structural Modeling (ISM) approach to model the hierarchical relationships among variables. The statistical population in the thematic analysis phase consisted of academic experts and managers from several governmental organizations, who were selected through purposive sampling, totaling 15 participants, until theoretical saturation was achieved. These participants were drawn from various domains to identify the initial factors ($n = 15$). The statistical population in the Delphi analysis and interpretive structural modeling phase included academic experts as well as executive and human resource managers from governmental organizations, of whom 12 participants were purposively selected. This purposive selection enabled access to deep and reliable qualitative data and assisted the researcher in extracting latent patterns within the integration process.

The data collection instrument in the qualitative phase consisted of semi-structured interviews. In the Delphi phase, an expert-oriented questionnaire was employed, and in the interpretive structural modeling phase, expert-based ISM questionnaires were utilized. To ensure validity and reliability in thematic analysis, a recoding verification procedure was conducted by three independent coders, resulting in an agreement coefficient exceeding 85%. Validity was further strengthened through participant review of the results. In the interpretive structural modeling approach, validity was established by evaluating the consistency of the relational matrix by an expert panel, and reliability was confirmed through replication of the modeling process across sample subgroups to ensure the stability and reproducibility of the model.

In this study, the drivers of non-elite selection were first identified and extracted using thematic analysis. Subsequently, the Delphi method was employed to evaluate and refine the identified variables. Finally, based on the importance and interrelationships among variables at the identified levels, the hierarchical model was developed. This integrated approach not only enhances the scientific validity of the research but also provides a practical foundation for applying the findings within governmental organizations.

The subject scope of the present study involves identifying the drivers of non-elite selection in governmental organizations. The geographical scope of the study includes governmental organizations in Iran. The temporal scope of the study, in terms of data collection, corresponds to the year 2025.

Findings and Results

In the first stage of the research, key concepts and insights related to the “interpretive structural modeling of the drivers of non-elite selection in Iranian governmental organizations” were extracted and listed from the interview process. For this purpose, the extracted statements, concepts, and indicators from the interviews were subjected to rigorous analysis and standardization procedures, including selecting more precise terminology and eliminating overlapping concepts. As a result, 190 initial indicators were identified. The extracted themes were organized into a checklist format to guide subsequent interviews, and through expert interviews, some indicators were revised or eliminated.

In the second stage, the identified basic themes were grouped into broader organizing themes. In the third stage, the thematic network was constructed. Table 1 presents the basic, organizing, and overarching themes within the primary category of drivers. Irrelevant themes were eliminated, and some related themes were merged, resulting in 15 final basic themes.

Table 1

Final Driver Codes After Screening

Indicators
Elite-averse managerial fear
Preference for personal relationships
Weak evaluation system
Anti-elite managerial attitudes
Resistance to change
Weak governance support
Anti-elite public culture
External political pressures
Influence of powerful interest groups
Internal organizational distrust
Migration of talented elites
Lack of organizational meritocracy
Centralized administrative decision-making
Inefficient employment structure
Traditional recruitment processes

The distribution and dispersion of variables in the scatter diagram indicate the stability or instability of the system. In the MICMAC software methodology and data analysis section, two types of dispersion are generally defined, known as stable systems and unstable systems. In stable systems, three categories can be observed: highly influential system variables (key or input factors), independent variables (low-influence and removable variables), and system output variables (dependent or outcome variables). In contrast, unstable systems are more complex than stable systems. In such systems, variables are distributed around the diagonal axis of the scatter plot, and most variables exhibit both influence and dependence characteristics simultaneously. In this condition, identifying key factors becomes significantly more difficult. Based on the input data and their analysis in the software environment, the position of key factors in the influence–dependence diagram is presented below.

In this study, the Delphi technique was used to evaluate and refine the 15 identified components. The perspectives of 15 experts regarding each indicator are presented in Table 2.

Table 2*Evaluation and Screening of Indicators Based on the Delphi Technique*

Component	Question	Mean	Median	Mode	Std. Deviation	Range	Q1	Q2	Q3	Status
Elite-averse managerial fear	D01	3.162	3	4	0.998	4	3	3	4	Confirmed
Preference for personal relationships	D02	3.465	4	4	0.908	4	3	4	4	Confirmed
Weak evaluation system	D03	3.651	2	2	0.482	1	2	3	3	Confirmed
Anti-elite managerial attitudes	D04	4.000	4	4	0.000	0	4	4	4	Confirmed
Resistance to change	D05	3.302	3	3	0.599	2	3	3	4	Confirmed
Weak governance support	D06	3.186	3	3	0.732	2	3	3	4	Confirmed
Anti-elite public culture	D07	3.627	4	4	0.655	2	3	4	4	Confirmed
External political pressures	D08	3.465	4	4	0.630	2	3	4	4	Confirmed
Influence of powerful interest groups	D09	3.255	3	3	0.658	3	3	3	4	Confirmed
Internal organizational distrust	D10	3.248	3	3	0.650	2	3	3	4	Confirmed
Migration of talented elites	D11	3.744	4	4	0.538	2	4	4	4	Confirmed
Lack of organizational meritocracy	D12	4.000	4	4	0.000	0	4	4	4	Confirmed
Centralized administrative decision-making	D13	3.754	4	4	0.520	2	4	4	4	Confirmed
Inefficient employment structure	D14	3.697	4	4	0.513	2	3	4	4	Confirmed
Traditional recruitment processes	D15	3.767	4	4	0.427	1	4	4	4	Confirmed

To calculate the agreement among expert opinions, Kendall's coefficient of concordance was used.

Table 3*Kendall's Coefficient of Concordance*

Delphi Round	Kendall's Coefficient	Degrees of Freedom	Significance Level
First Round	0.845	14	0.000

Based on the results presented in Table 3, Kendall's coefficient obtained in the second round of the Delphi technique was 0.845, indicating a moderate level of agreement among expert opinions. Furthermore, the significance level was 0.000, demonstrating that the obtained results are statistically significant and can be relied upon with 95% confidence.

To determine the hierarchical levels of the drivers of non-elite selection in Iranian governmental organizations, the Interpretive Structural Modeling (ISM) method was employed. The design of the interpretive structural model is a method used to examine the influence of each variable on other variables. This design represents a comprehensive approach for assessing relationships and is used to develop the structural framework of the model in order to achieve the overall research objectives.

To construct the initial model, the interpretive structural modeling method was applied. For this purpose, the Structural Self-Interaction Matrix (SSIM) was first developed. The relationships among the overarching constructs were represented using four symbols: V (variable i influences variable j), A (variable j influences variable i), X (bidirectional relationship), and O (no relationship). The structural self-interaction matrix is presented in Table 4.

Table 4*Structural Self-Interaction Matrix (SSIM) of the Drivers of Non-Elite Selection in Iranian Governmental Organizations*

SSIM	D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15
D01	A	A	A	X	A	A	A	A	V	V	A	A	A	A	A
D02		X	X	V	A	A	A	A	V	V	A	A	A	A	A
D03			X	V	A	A	A	A	V	V	A	A	A	A	A
D04				V	A	A	A	A	V	V	A	A	A	A	A
D05					A	A	A	A	V	V	A	A	A	A	A
D06						X	X	V	V	V	V	V	V	V	V
D07							X	V	V	V	V	V	V	V	V
D08								V	V	V	V	V	V	V	V
D09									V	V	X	X	V	V	V

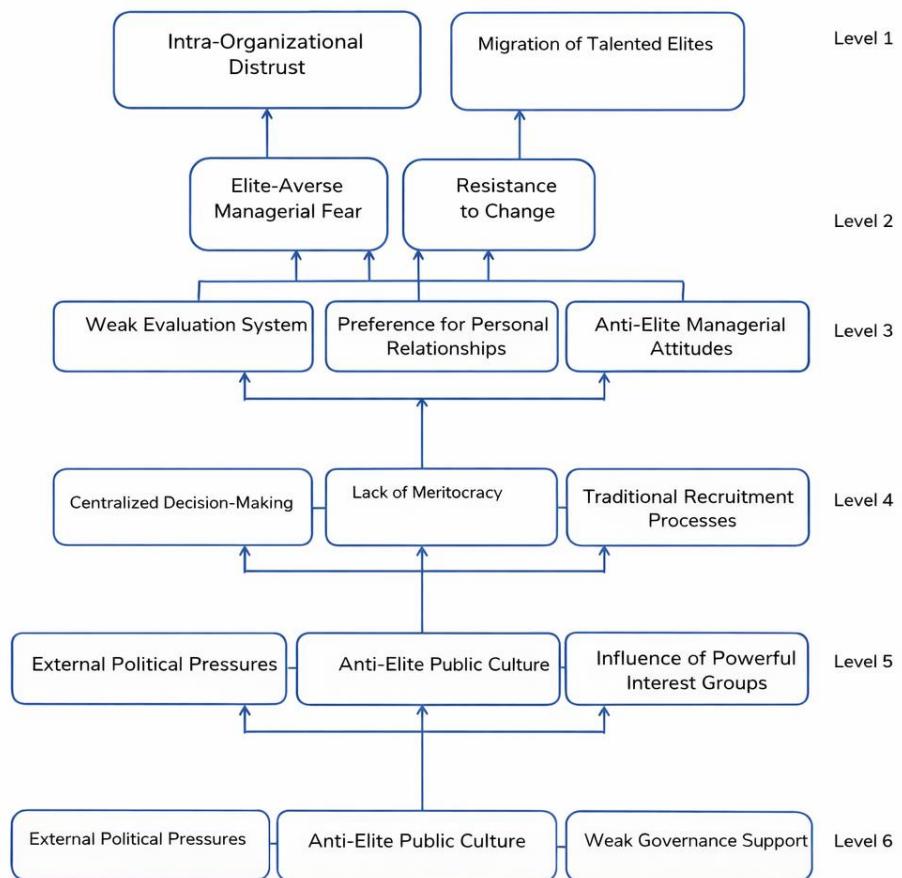
D10		X	A	A	A	A
D11			A	A	A	A
D12				X	V	V
D13					V	V
D14						X
D15						

By converting the structural self-interaction matrix into a binary matrix consisting of zeros and ones, the reachability matrix (RM) is obtained. In the reachability matrix, the diagonal elements are assigned a value of one. Additionally, secondary relationships must be verified. This means that if variable A leads to variable B, and variable B leads to variable C, then variable A must also lead to variable C. Therefore, if indirect relationships imply direct influence but such influence is not reflected in the matrix, corrections must be applied to incorporate these secondary relationships. The final reachability matrix is presented in Table 5.

Table 5*Final Reachability Matrix of the Drivers of Non-Elite Selection in Iranian Governmental Organizations*

SSIM	D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15
D01	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0
D02	1	0	1	1	1	0	0	0	0	1	1	0	0	0	0
D03	1	1	0	1	1	0	0	0	0	1	1	0	0	0	0
D04	1	1	1	0	1	0	0	0	0	1	1	0	0	0	0
D05	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0
D06	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
D07	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
D08	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
D09	1	1	1	1	1	0	0	0	0	1	1	1	1	1	1
D10	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
D11	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
D12	1	1	1	1	1	0	0	0	1	1	1	0	1	1	1
D13	1	1	1	1	1	0	0	0	1	1	1	1	0	1	1
D14	1	1	1	1	1	0	0	0	0	1	1	0	0	0	1
D15	1	1	1	1	1	0	0	0	0	1	1	0	0	1	0

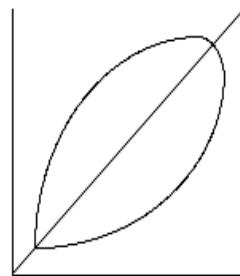
After constructing the reachability matrix, the reachability set and antecedent set must be identified in order to determine hierarchical levels. The reachability set (output or influence set) includes variables that can be reached from a given variable. The antecedent set (input or dependence set) includes variables through which the given variable can be reached. The input and output sets used for level determination are presented in Table 6.


Table 6*Input and Output Sets for Level Determination*

Variable	Output (Driving Power)	Input (Dependence)	Intersection	Level
D01	D01, D05, D10, D11	D01, D02, D03, D04, D05, D06, D07, D08, D09, D12, D13, D14, D15	D01, D05	4
D02	D01, D02, D03, D04, D05, D10, D11	D02, D03, D04, D06, D07, D08, D09, D12, D13, D14, D15	D02, D03, D04	6
D03	D01, D02, D03, D04, D05, D10, D11	D02, D03, D04, D06, D07, D08, D09, D12, D13, D14, D15	D02, D03, D04	6
D04	D01, D02, D03, D04, D05, D10, D11	D02, D03, D04, D06, D07, D08, D09, D12, D13, D14, D15	D02, D03, D04	5
D05	D01, D05, D10, D11	D01, D02, D03, D04, D05, D06, D07, D08, D09, D12, D13, D14, D15	D01, D05	6
D06	D01-D15	D06, D07, D08	D06, D07, D08	5
D07	D01-D15	D06, D07, D08	D06, D07, D08	7
D08	D01-D15	D06, D07, D08	D06, D07, D08	2
D09	D01-D15 (excluding D06-D08)	D06, D07, D08, D09, D12, D13	D09, D12, D13	4
D10	D10, D11	D01-D15	D10, D11	7
D11	D10, D11	D01-D15	D10, D11	7
D12	D01-D15 (excluding D06-D08)	D06, D07, D08, D09, D12, D13	D09, D12, D13	3
D13	D01-D15 (excluding D06-D08)	D06, D07, D08, D09, D12, D13	D09, D12, D13	7
D14	D01-D05, D10, D11, D14, D15	D06, D07, D08, D09, D12, D13, D14, D15	D14, D15	4
D15	D01-D05, D10, D11, D14, D15	D06, D07, D08, D09, D12, D13, D14, D15	D14, D15	3

Accordingly, variables D10 and D11 were identified as Level 1 variables. After identifying Level 1 variables, these variables were removed, and the input and output sets were recalculated without considering Level 1 variables. The intersection sets were then identified, and variables whose intersection sets were equal to their input sets were selected as Level 2 variables. Variables D01 and D05 were identified as Level 2 variables. Variables D02, D03, and D04 were identified as Level 3 variables. Variables D14 and D15 were identified as Level 4 variables. Variables D09, D12, and D13 were identified as Level 5 variables. Variables D06, D07, and D08 were identified as Level 6 variables. The driving power and dependence power of the studied variables are presented in Figure 1.

Figure 1


Interpretive Structural Model of the Hierarchical Drivers of Non-Elite Selection in Iranian Governmental Organizations

The distribution and dispersion pattern of variables on the scatter plot indicate the level of system stability or instability. In the field of cross-impact/structural analysis using MICMAC software, two general types of dispersion are defined, known as stable systems and unstable systems. In the stable system model, the dispersion of variables follows an L-shaped pattern; in this model, some variables exhibit high driving power, while others demonstrate high dependence. However, in unstable systems, the situation is more complex. In such systems, the variables under consideration are dispersed around the diagonal axis of the plot, and in most cases, they simultaneously exhibit both influence and dependence characteristics, making the identification of key variables more difficult. Based on the dispersion pattern of the drivers affecting non-elite selection in Iranian governmental organizations, the system exhibits instability. Most variables are distributed around the diagonal axis of the plot. Except for a few variables that demonstrate high influence within the system, the remaining variables exhibit relatively similar positions in terms of influence and dependence (Figures 2 and 3).

Figure 2

Unstable System

Figure 3

Stable System

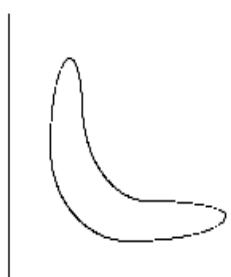
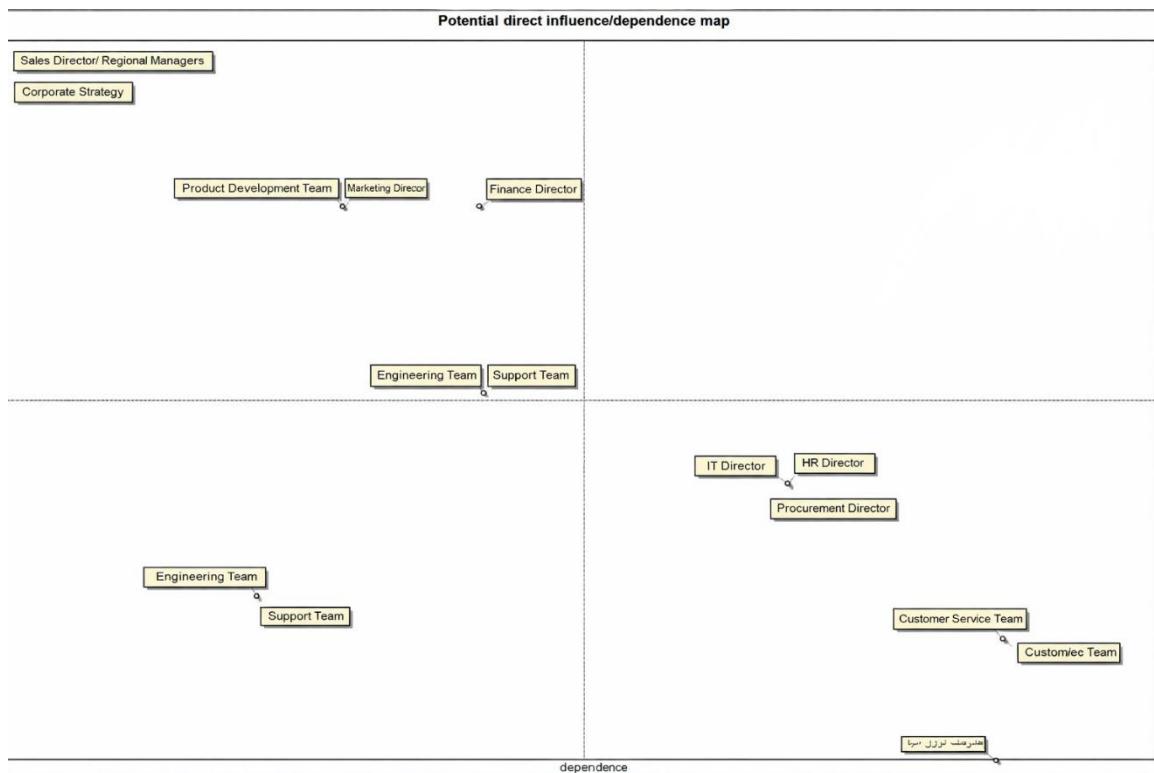
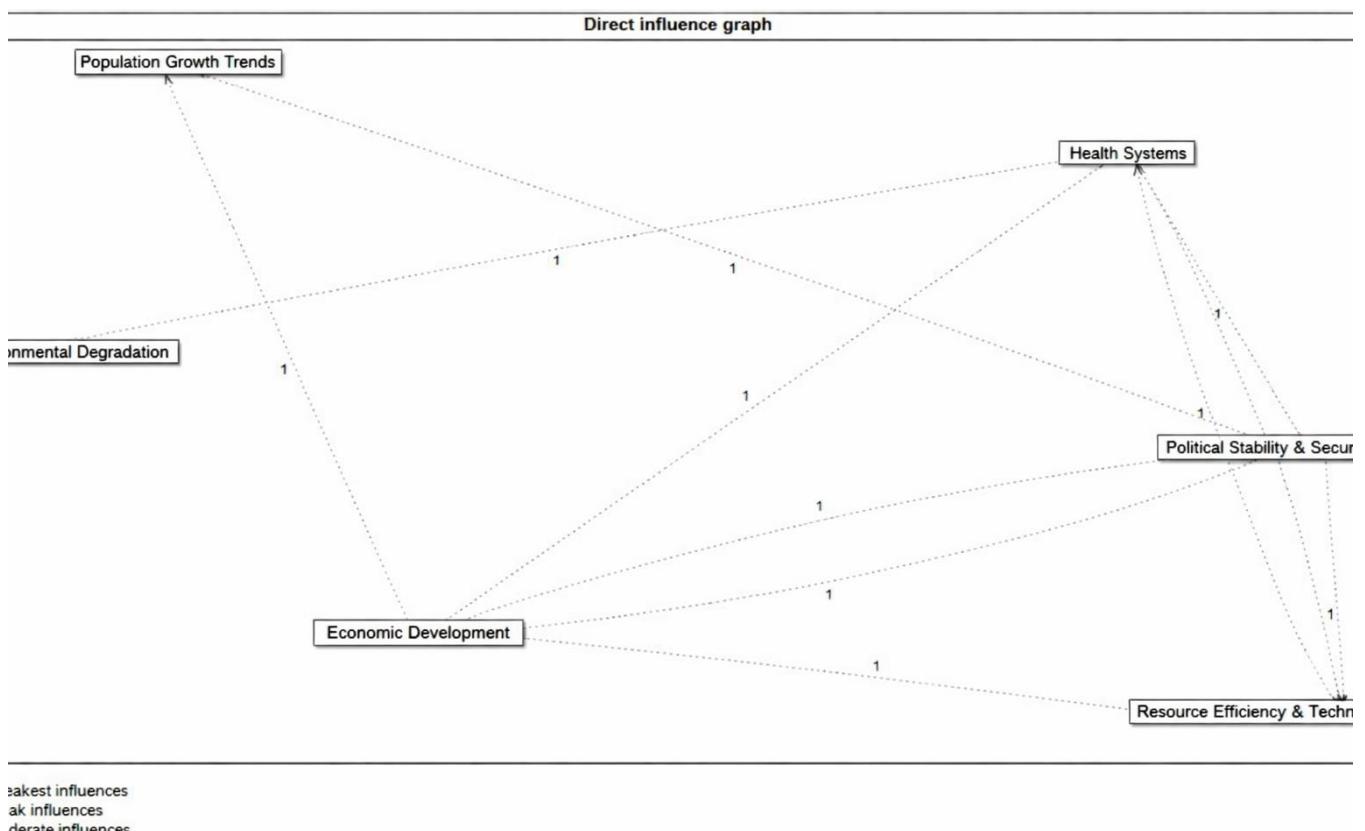



Figure 4 illustrates the dispersion pattern of the drivers of non-elite selection in Iranian governmental organizations. This dispersion pattern generally indicates the condition of an unstable system (Figure 4).

Figure 4

Dispersion Pattern of Influencing Factors



Determinant or driving factors: These factors exert high influence and low dependence. Therefore, the system largely depends on these variables. These factors are located in the northwest quadrant of the diagram. Driving factors are considered the most critical components because system changes depend on them, and controlling these factors is of paramount importance. Additionally, these factors are considered input variables of the system. Among the 15 factors examined in this study, several indicators were identified as key drivers of non-elite selection in Iranian governmental organizations. In this research, the variables located in this quadrant include: (1) external political pressures, (2) weak governance support, (3) anti-elite public culture, (4) lack of organizational meritocracy, and (5) influence of powerful interest groups.

Dependent factors or outcome drivers: These factors are located in the southeast quadrant of the diagram. They exhibit low driving power but very high dependence. In this study, internal organizational distrust, migration of talented elites, resistance to change, and elite-averse managerial fear were located in this region. The following figures present the graphical representation of the model of drivers of non-elite selection in Iranian governmental organizations. These figures illustrate the direct and indirect influences of the drivers on other drivers within the system. The level of influence among drivers is classified as strongest influence, strong influence, moderate influence, weak influence, and weakest influence.

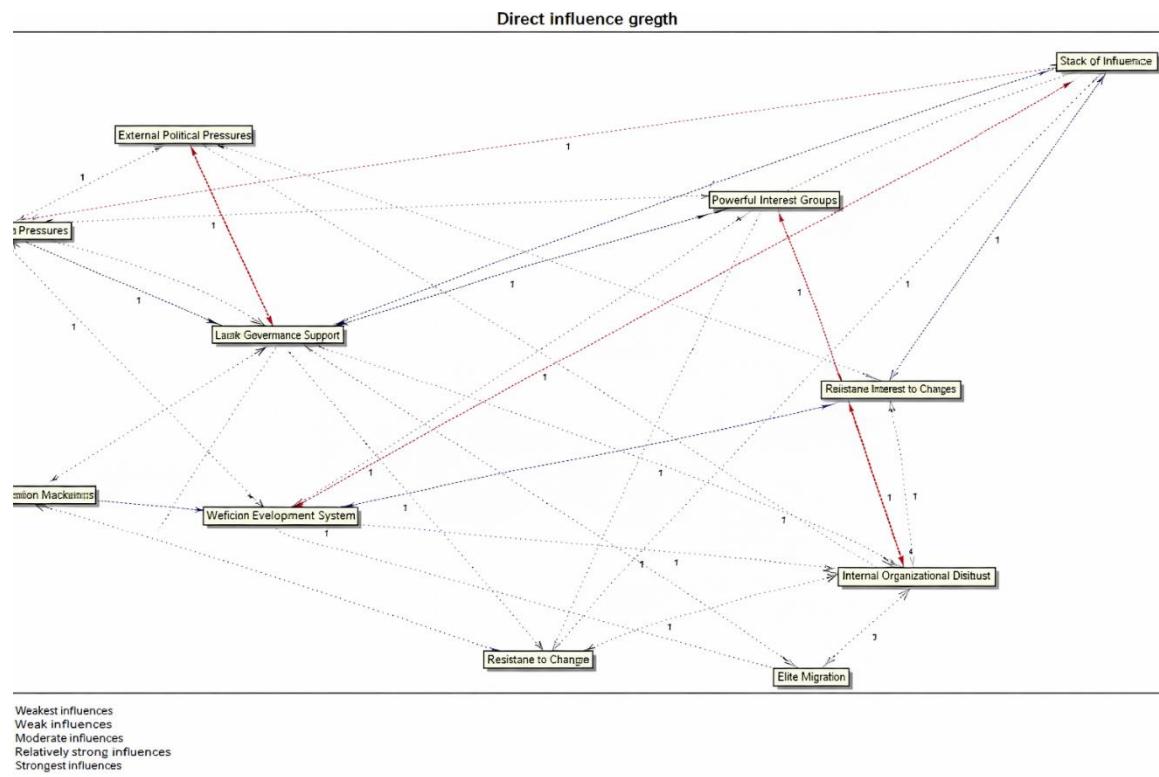

Figure 5

Diagram of Direct Influences of Factors (Strongest Influence)

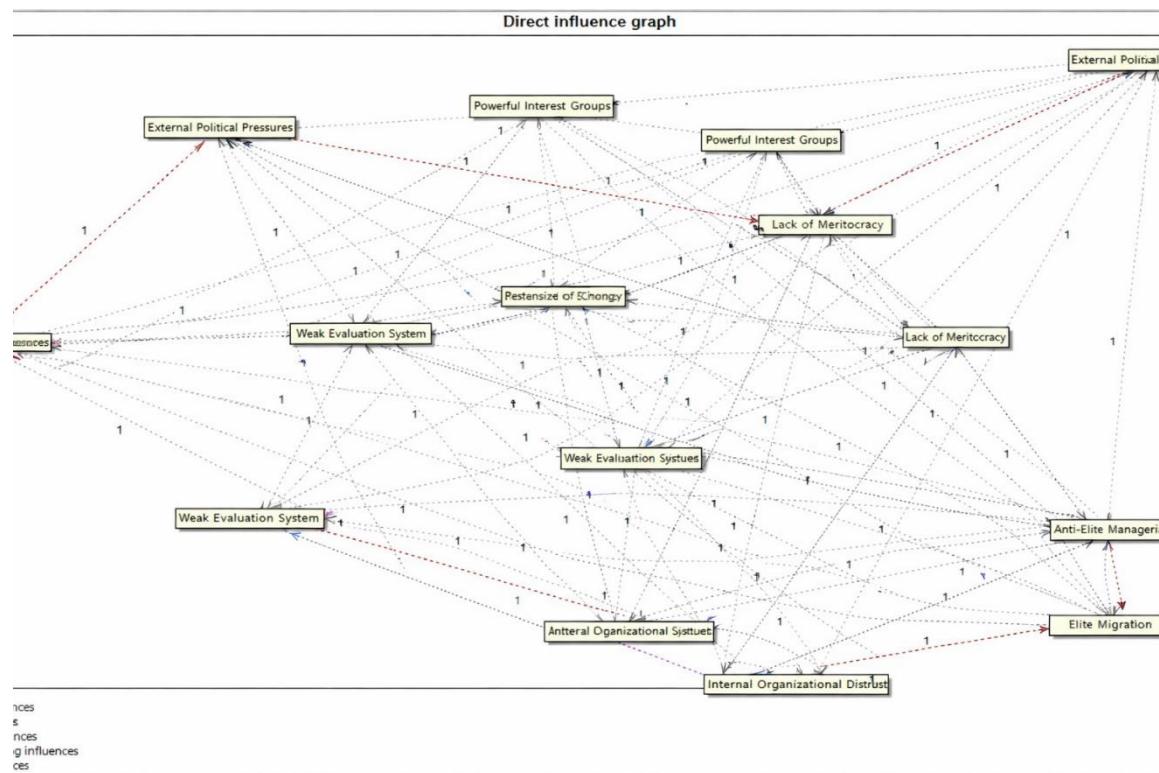

Figure 6

Diagram of Direct Influences of Factors (Moderate Influence)

Figure 7

Diagram of Direct Influences of Factors (Weakest Influence)

Discussion and Conclusion

The findings of the present study provide a comprehensive structural explanation of the drivers of non-elite selection in Iranian governmental organizations by identifying hierarchical relationships among structural, cultural, managerial, and political factors. The interpretive structural modeling results revealed that root-level drivers—including weak governance support, anti-elite public culture, and external political pressures—occupy the deepest level of the model, indicating their foundational influence on the entire system of elite selection. These structural drivers exert indirect but powerful effects on organizational recruitment mechanisms, shaping intermediate variables such as lack of meritocracy, centralized administrative decision-making, and the influence of powerful interest groups. These intermediate variables, in turn, influence recruitment structures, managerial attitudes, and evaluation systems, ultimately resulting in outcome-level consequences such as elite migration and internal organizational distrust. This hierarchical configuration confirms that non-elite selection is not merely a procedural deficiency but a systemic phenomenon driven by deeply embedded institutional and socio-political dynamics.

The identification of weak governance support as a root-level driver highlights the central role of institutional frameworks in shaping talent selection processes. Governance quality directly affects transparency, accountability, and fairness in recruitment systems, and its absence creates an environment where meritocratic principles cannot be consistently enforced. This finding aligns with previous research emphasizing that ineffective governance structures weaken talent management systems and limit organizations' ability to attract and retain high-potential individuals [13, 14]. Furthermore, governance deficiencies often lead to inconsistent policy implementation and reduced organizational autonomy, which in turn create conditions conducive to non-meritocratic recruitment practices. In line with global research on talent competitiveness, countries and organizations with weak governance systems tend to experience lower talent attraction and retention capacity, resulting in reduced institutional performance and innovation capacity [2]. Therefore, governance reform emerges as a critical prerequisite for improving elite selection systems.

The results also identified anti-elite public culture as a foundational driver, highlighting the importance of socio-cultural factors in shaping recruitment outcomes. Cultural attitudes toward elites influence both organizational decision-making and public perceptions of merit-based recruitment. Negative perceptions of elites may result in resistance to elite recruitment and promotion, particularly in environments characterized by distrust toward authority or institutional inequality. This finding is consistent with previous research demonstrating that societal attitudes and psychological responses toward elites significantly influence organizational recruitment and talent development practices [11, 12]. Cultural resistance to elite selection may also manifest in managerial decision-making, where leaders avoid recruiting highly capable individuals due to perceived threats to their authority or organizational stability. This phenomenon has been documented in studies of elite-avoidance strategies in public sector organizations, which emphasize the role of cultural and psychological factors in shaping recruitment behavior [9].

External political pressures were also identified as a root-level driver, underscoring the impact of political environments on organizational recruitment processes. Political interference in recruitment decisions can undermine meritocratic systems and lead to the selection of individuals based on political loyalty rather than competence. This finding is consistent with prior research demonstrating that political influence and patronage systems distort recruitment processes and reduce organizational effectiveness [4]. Political pressures may also contribute to centralized decision-making structures, which

further limit transparency and reduce the autonomy of human resource management systems. The presence of political influence in recruitment processes reflects broader institutional dynamics that shape organizational behavior and governance outcomes, highlighting the need for structural reforms to enhance recruitment transparency and accountability.

At the intermediate level of the model, the lack of organizational meritocracy emerged as a critical driver linking structural and operational factors. Meritocracy represents a fundamental principle of effective talent management systems, ensuring that recruitment and promotion decisions are based on competence and performance rather than personal relationships or political considerations. The absence of meritocracy creates systemic inefficiencies, reduces employee motivation, and weakens organizational performance. This finding aligns with previous research emphasizing the importance of merit-based recruitment systems in enhancing organizational effectiveness and talent retention [1, 5]. Meritocratic systems not only improve organizational performance but also enhance employee trust and commitment, creating a positive organizational climate conducive to innovation and professional development.

Centralized administrative decision-making was also identified as an intermediate driver, reflecting the structural characteristics of governmental organizations. Centralized decision-making systems often limit organizational flexibility and reduce the effectiveness of recruitment processes by concentrating authority in a small number of decision-makers. This concentration of power increases the risk of biased or politically influenced recruitment decisions, reducing transparency and accountability. Previous research has highlighted the negative impact of centralized governance structures on talent management systems, emphasizing the importance of decentralized and participatory decision-making processes in improving recruitment outcomes [17, 25]. Decentralized recruitment systems allow organizations to respond more effectively to talent needs and reduce the influence of external political and organizational pressures.

The influence of powerful interest groups was another intermediate-level driver identified in the model. Interest groups may exert direct or indirect influence on recruitment decisions, promoting candidates based on political, social, or organizational affiliations rather than merit. This dynamic undermines organizational fairness and reduces the effectiveness of talent management systems. Similar findings have been reported in previous research, which demonstrates that external stakeholders can significantly influence recruitment and talent management processes in public organizations [10]. The presence of such influences highlights the importance of establishing transparent recruitment procedures and strengthening institutional safeguards to prevent undue interference.

At the operational level, inefficient employment structures and traditional recruitment processes were identified as critical drivers influencing elite selection outcomes. Traditional recruitment systems often rely on outdated evaluation methods that fail to accurately assess candidates' competencies and potential. These systems may prioritize formal qualifications over actual performance capabilities, resulting in suboptimal recruitment outcomes. Recent research emphasizes the importance of modern recruitment methodologies, including competency-based assessment and digital evaluation tools, in improving recruitment accuracy and effectiveness [6, 7]. The integration of artificial intelligence and machine learning technologies into recruitment systems has been shown to enhance candidate selection accuracy and reduce bias, providing new opportunities for improving elite selection processes [3, 8].

Managerial attitudes and evaluation systems were also identified as key drivers influencing recruitment outcomes. Anti-elite managerial attitudes, fear of change, and preference for personal relationships create barriers to merit-based recruitment and limit organizational innovation. These findings align with previous research demonstrating that managerial

resistance to change and preference for familiar candidates can reduce recruitment effectiveness and limit organizational performance [20, 24]. Organizational evaluation systems also play a critical role in recruitment processes, and weaknesses in evaluation frameworks can lead to inaccurate assessment of candidates' capabilities. Improving evaluation systems through standardized competency frameworks and performance-based assessments can significantly enhance recruitment outcomes and organizational effectiveness.

At the outcome level, elite migration and internal organizational distrust were identified as the primary consequences of non-elite selection systems. Elite migration represents a significant loss of intellectual capital and reduces organizational capacity for innovation and effective governance. This finding is consistent with previous research emphasizing the economic and organizational consequences of elite migration, including reduced institutional performance and weakened national competitiveness [16]. Internal organizational distrust also represents a significant consequence of non-meritocratic recruitment systems, as employees who perceive recruitment processes as unfair are less likely to trust organizational leadership and commit to organizational goals. Trust is a critical component of organizational effectiveness, and its absence can significantly reduce employee motivation and performance [17].

Overall, the findings of this study confirm that non-elite selection in governmental organizations is a multidimensional phenomenon driven by structural, cultural, managerial, and procedural factors. The hierarchical structure identified through interpretive structural modeling provides a comprehensive framework for understanding the causal relationships among these drivers and highlights the importance of addressing root-level structural and cultural factors to improve recruitment systems. The results also demonstrate the value of systems-based methodologies in analyzing complex organizational phenomena and support the use of interpretive structural modeling as an effective tool for understanding talent management challenges [15, 18]. By addressing structural governance deficiencies, improving recruitment systems, and promoting meritocratic organizational cultures, governmental organizations can enhance their ability to attract and retain elite talent, thereby improving organizational performance and governance effectiveness.

One limitation of the present study relates to the reliance on expert judgment in identifying and structuring the drivers of non-elite selection. Although expert-based methodologies such as Delphi and interpretive structural modeling provide valuable insights, they are inherently dependent on participants' subjective perceptions and experiences. Additionally, the sample was limited to experts and managers within governmental organizations, which may restrict the generalizability of the findings to other organizational contexts, such as private sector institutions or non-governmental organizations. Another limitation concerns the cross-sectional nature of the study, which does not capture changes in recruitment systems over time. Organizational recruitment processes are dynamic and influenced by evolving political, technological, and institutional conditions, which may alter the relationships among variables identified in this study.

Future research should expand the scope of investigation by incorporating quantitative validation techniques, such as structural equation modeling, to empirically test the causal relationships identified in the interpretive structural model. Longitudinal studies could also provide valuable insights into how recruitment systems evolve over time and how structural reforms influence elite selection outcomes. Comparative studies involving different countries or organizational contexts may further enhance understanding of how cultural, political, and institutional factors influence elite selection. Additionally, future research could explore the role of emerging technologies, such as artificial intelligence and predictive analytics, in improving recruitment accuracy and reducing bias in governmental organizations.

From a practical perspective, the findings of this study provide important implications for policymakers and organizational leaders seeking to improve elite selection systems. Strengthening governance frameworks, enhancing recruitment transparency, and promoting meritocratic organizational cultures should be prioritized to improve talent management outcomes. Organizations should modernize recruitment systems by adopting competency-based evaluation frameworks and leveraging digital technologies to enhance selection accuracy. Leadership development programs should also be implemented to reduce managerial resistance to elite recruitment and promote organizational cultures that value competence and innovation. By addressing the structural and cultural drivers identified in this study, governmental organizations can significantly enhance their ability to attract, develop, and retain elite talent, thereby improving institutional performance and governance effectiveness.

Acknowledgments

We would like to express our appreciation and gratitude to all those who cooperated in carrying out this study.

Authors' Contributions

All authors equally contributed to this study.

Declaration of Interest

The authors of this article declared no conflict of interest.

Ethical Considerations

The study protocol adhered to the principles outlined in the Helsinki Declaration, which provides guidelines for ethical research involving human participants. Written consent was obtained from all participants in the study.

Transparency of Data

In accordance with the principles of transparency and open research, we declare that all data and materials used in this study are available upon request.

Funding

This research was carried out independently with personal funding and without the financial support of any governmental or private institution or organization.

References

- [1] M. Dabic, J. Maley, M. Moeller, and B. Vlačić, "Embodiment of talent management within entrepreneurship: A Bibliometric approach," in *Contemporary talent management: A research companion*, I. Tarique Ed., 1st ed. New York: Routledge, 2021.
- [2] B. Lanvin and F. Monteiro, "The Global Talent Competitiveness Index 2023: What a Difference a Decade Makes," INSEAD, 2023.
- [3] L. Marinelli, A. Cioli, and G. L. Gregori, "Training, Reskilling, Recruiting: The Future of Work in the Age of Generative AI," Emerald Publishing Limited, 2025, ch. The Generative AI Impact: Reframing Innovation in Society 5.0, pp. 237-256.
- [4] R. Sharifi, M. Zolghadr, and F. Jafari, "Pathological analysis of the Islamic Republic of Iran's policies regarding the recruitment and retention of elites and top talents," (in Persian), *International Relations Research*, vol. 11, no. 1, pp. 345-369, 2021.

[5] A. Skuza, H. Scullion, and A. McDonnell, "An analysis of the talent management challenges in a post-communist country: the case of Poland," *The International Journal of Human Resource Management*, vol. 24, no. 3, pp. 453-470, 2012, doi: 10.1002/hrm.3930240406.

[6] C. Foster, R. Oster, S. Shrestha, and B. Hidalgo, "Evaluation of Recruitment Methodologies for Under-Represented Adolescent Populations in Genetic and Epigenetic Studies of Type 2 Diabetes," *Journal of Clinical and Translational Science*, vol. 9, no. s1, pp. 95-95, 2025, doi: 10.1017/cts.2024.944.

[7] H. Okati, "The Role of Artificial Intelligence in Improving Recruitment and Selection Processes in Public Sector Organizations," *Management Strategies and Engineering Sciences*, vol. 7, no. 1, pp. 15-23, 2025, doi: 10.61838/mzesj.7.1.3.

[8] M. F. N. Adillah, S. Suakanto, and N. I. Utama, "Implementation of Machine Learning-Based Classification Model in Employee Recruitment Decision Prediction," *Journal La Multiapp*, vol. 6, no. 2, pp. 328-339, 2025, doi: 10.37899/journallamultiapp.v6i2.2050.

[9] H. Alvandi and M. Mohammad-Mazaheri, "Analysis of managers' elite-avoidance strategies in Iranian government organizations," (in Persian), *Management Research in Iran*, vol. 24, no. 3, pp. 117-142, 2020.

[10] M. R. Dalvi, "Designing a Model for Managing the Organizational Behavior of Difficult Employees," *Digital Transformation and Administration Innovation*, vol. 2, no. 3, pp. 8-16, 2024, doi: 10.61838/dtai.2.3.2.

[11] H. Lea and J. C. Becker, "Exposure to Neoliberalism Increases Resentment of the Elite via Feelings of Anomie and Negative Psychological Reactions," *The Social Psychology of Neoliberalism*, vol. 75, no. 1, pp. 113-133, 2019, doi: 10.1111/josi.12311.

[12] W. Davies, "Elite power under advanced neoliberalism," *Theory, Culture & Society*, vol. 34, no. 5, pp. 227-250, 2017, doi: 10.1177/0263276417715072.

[13] B. Panahi, "Futures studies of talent management in Iranian government organizations," (in Persian), *Management of Government Organizations*, vol. 10, no. 1, pp. 139-154, 2021.

[14] F. Pazhoohan, M. Sultan-Hosseini, S. Naderian-Jahromi, and M. Jahanian, "Presenting a dynamic talent management model for forward-looking policymaking (Case Study: Ministry of Sports and Youth)," (in Persian), *Sport Management*, vol. 16, no. 1, pp. 57-74, 2024.

[15] H. Sharifpour and A. Safaei Ghadikolaei, "A Roadmap for Deploying Industry 4.0 Technologies in Selected Food Industries Using the Interpretive Structural Modeling (ISM) Technique," *Transactions on Data Analysis in Social Science*, vol. 2, no. 2, pp. 112-122, 2020, doi: 10.47176/TDASS.2020.112.

[16] M. S. Sajjadi, "Causes and consequences of elite migration," (in Persian), *Economic Security Monthly*, vol. 12, no. 2, pp. 51-66, 2024.

[17] T. N. Mmatabane, L. P. Dachapalli, and C. M. Schultz, "The future of talent management in the City of Tshwane Metropolitan Municipality," *SA Journal of Human Resource Management*, vol. 21, no. 0, p. a2386, 2023, doi: 10.4102/sajhrm.v21i0.2386.

[18] J. Voros, "Big History and Anticipation," in *Handbook of Anticipation*, R. Poli Ed. Cham: Springer, 2019, pp. 425-464.

[19] Y. Strengers, S. Pink, and L. Nicholls, "Smart energy futures and social practice imaginaries: Forecasting scenarios for pet care in Australian homes," *Energy Research & Social Science*, vol. 48, pp. 108-115, 2019, doi: 10.1016/j.erss.2018.09.015.

[20] G. Ghadirinejad, M. Rajab Beigi, and A. Golami, "Scenario Development of Talent Management System in Iran's National Oil Products Distribution Company," *Journal of System Management*, vol. 9, no. 4, 2023. [Online]. Available: <https://www.magiran.com/p2642488>.

[21] S. Shahi, E. Khajeh-Koulaki, Y. Mehr-Alizadeh, and M. Marashi, "Scenarios for Iranian teacher recruitment and training in the horizon of 2036," (in Persian), *Journal of Iran Futures Studies*, vol. 6, no. 2, pp. 137-166, 2021.

[22] M. Olkiewicz, "Quality improvement through foresight methodology as a direction to increase the effectiveness of an organization," *Contemporary Economics*, vol. 12, no. 1, pp. 69-81, 2018.

[23] R. Bendor, E. Eriksson, and D. Pargman, "Looking backward to the future: On past-facing approaches to futuring," *Futures*, vol. 125, pp. 102-666, 2021.

[24] R. Challa, M. D. Parne, M. Srinivas, and N. Shravya, "Crafting code keepers: An in-depth exploration of talent management strategies for sustainable employee retention in the software industry," *MATEC Web of Conferences*, vol. 392, p. 01053, 2024, doi: 10.1051/matecconf/202439201053.

[25] G. R. Ghadirinezhad, M. Rajab-Beigi, and A. Gholami, "Identifying effective components in talent management using thematic analysis in the National Iranian Oil Products Distribution Company," (in Persian), *Strategic Studies in the Oil and Energy Industry*, vol. 16, no. 62, 2024.

[26] F. Sohrabi, N. Babaeian Jelodar, and N. Bagheri, "Evaluation of Fertility Restorer Genotypes Using Multivariate Statistical Methods," *Transactions on Data Analysis in Social Science*, vol. 5, no. 4, pp. 213-218, 2023, doi: 10.47176/TDASS.2023.213.